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Part 1 

 

Causal Analysis: 

Total Derivatives 
and Graph Theory 
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Causal Graph (1/2) 

• Causal graph shows causal dependencies 
between variables (vertices / nodes). 

• Arrows (edges / vertices) are causal directions 
”→” instead of symmetric correlations.  

• Causal graph of direct effects is a structural 
model, total effects are reduced form model. 

• A means for explainable artificial intelligence 
(XAI) in neural networks 
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Causal Graph (2/2) 

Each arrow indicates a direct cause. Example: 

• D depends on A, B, C. 
C depends on B, D. 
A and B are independent. 

• A, B exogenous (no arrow in). 
C, D endogenous. 

• Cyclic graph since C, D 
cause each other 
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Causal Analysis 

• Causal analysis of sensitivity: 
Effect of a variable on another 

• Mediation analysis: 
Decomposition of effects over child variables 
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Notation 

• Matrix with row and column vectors 
 

My = myjι j,ι=1,…,n
=

𝐦y 1

⋮
𝐦y n

= 𝐦y1, … ,𝐦yn  

• Myji is My with row j, column i replaced by zeros 

• In is n-dim. identity matrix and 𝟏n vector of ones 

• Partial derivative: 
𝜕𝐲 

𝜕𝐱T
 

• Total derivative: 
d𝐲 

d𝐱T
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Equation system 

Model equations in matrix form: 
 

𝐲 = M 𝐲, 𝐱 =
M1 𝐲, 𝐱

⋮
Mn 𝐲, 𝐱

 

  
 
𝐲

n1

=

y1
⋮
yn

,

 
 
𝐱

m1
=

x1
⋮
xm
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Linearization (1/2) 

Our Approach: 

1) Given a system of model equations 
(e.g. expert system from prior knowledge) 

2) We define effects as total derivatives 

3) Using linear algebra and matrix notation to 
summarize all effects 

9 



Linearization (2/2) 

• Total differential: 

dyj =  
𝜕Mj

𝜕yh
dyh + 

𝜕Mj

𝜕xl
dxl

m

l=1

n

h=1

, j = 1,… , n 

• In matrix form: 
d𝐲 = Myd𝐲 +Mxd𝐱   (structural form) 

⇒ d𝐲 = In −My
−1
Mx d𝐱  (reduced form) 

• Normalization (yj to left hand side): 

My has zero main diagonal 
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Total (Exogenous) Derivative 

Dividing total differential by dxi: 
 

 
dyj

dxi
=  

𝜕Mj

𝜕yh

dyh

dxi

n
h=1 +  

𝜕Mj

𝜕xl

dxl

dxi

m
l=1  

       =  
𝜕Mj

𝜕yh

dyh

dxi

n
h=1 +

𝜕Mj

𝜕xi
 

 

In matrix form: 
 
d𝐲 

d𝐱T
= My

d𝐲 

d𝐱T
+Mx 

 

⇒
d𝐲 

d𝐱T
≡ Ex = In −My

−1
Mx 
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Total Endogenous Derivative (1/2) 

With own effects defined as one (dyι/dyι ≡ 1) 
and Kronecker delta δjι: 
 

dyj

dyι
= 1 − δjι  

𝜕Mj

𝜕yh

dyh
dyι

n

h=1

+ 1 · δjι 

In matrix form, with element wise product (○): 
 

d𝐲 

d𝐲T
= 1nn − In ○ My

d𝐲 

d𝐲T
+ In 

         = My

d𝐲 

d𝐲T
− In ○ My

d𝐲 

d𝐲T
+ In 
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Total Endogenous Derivative (2/2) 

⇔
d𝐲 

d𝐲T
= In −My

−1
In ○ My

d𝐲 

d𝐲T
+ In  

Solving for d𝐲/d𝐲T whilst ensuring unit main 
diagonal (own effects). 

Solution is given by column-wise normalization: 
 

d𝐲 

d𝐲T
≡ Ey = In −My

−1
In ○ In −My

−1 −1
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Final Effects 

• For mediation analysis we decompose an 
effect over its outgoing edges to its child 
variables. 

• Each effect is the sum of its final effects ejhi 
from node xj over yh to the j-th „final“ 
variable of interest yj. (e.g. economic capital.)  

• Note, we need the structural parameters / 
direct effects Mx and My.  
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Final Exogenous Effects 

The (j,i)-th effect of Ex = In −My
−1
Mx,  

 
dyj

dxi
= In −My

−1

j
𝐦xi =  ejhi,x

n
h=1  

can be decomposed into the sum of its final effects 
ejhi,x from xi over yh to final variable yj: 

ejhi,x = In −My
−1

jh

𝜕Mh

𝜕xi
 

In matrix form: 
 

Fx
j
= In −My

−1

j

T

𝟏 m ○ Mx 
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Final Endogenous Effects 

The j-th effect of 𝐞yιι = In −Myιι
−1
𝐦yιι with eyιι ≡ 1,  

 
dyj

dyι
= 1 − δjι In −Myιι

−1

j
𝐦yιι + δjι =  ejhι,y

n
h=1  

(see Bartel (2019), sec. 3.4) can be decomposed into sum 
of its final effects ejhι,y from yι over yh to final variable yj: 

ejhι,y = In −Myιι
−1

jh

𝜕Mh

𝜕yι
 with eιιι,y ≡ 0 

In matrix form: 

Fy
j
= 1nn − In ○ In −My11

−1

j

T

, … , In −Mynn
−1

j

T

○ My  
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Summary: Effect Formulas 

Total exogenous and endogenous effects: 

Ex = In −My
−1
Mx 

 

Ey = In −My
−1

In ○ In −My
−1 −1

 

Final exogenous and endogenous effects on yj: 

Fx
j
= In −My

−1

j

T

𝟏 m ○ Mx 

 

Fy
j
= 1nn − In ○ In −My11

−1

j

T

, … , In −Mynn
−1

j

T

○ My 
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Example (1/7) 
• y1 = x1 
  y2 = 2y1

2 + x2 
  y3 = y1 + y2 

 Note: read (=) as (←) 

• Exogenous 𝐱 =
x1
x2

=
3
2

 

• Solution 𝐲 =

y1
y2
y3

=
3
20
23

 

• Partial graph: denote edges by non- 
zero partial derivatives Mx, My at 𝐱 

Partial Graph 

18 



Example (2/7) 

• Simple nonlinear, acyclic system with non-
constant matrix of partial derivatives:  

 
Mx

nm

=
𝜕𝐲 

𝜕𝐱T
=

1 0
0 1
0 0

, 

 
 
My

nn

=
𝜕𝐲 

𝜕𝐲T
=

0 0 0
4x1 0 0
1 1 0

=
0 0 0
12 0 0
1 1 0

 

• Proxy: original model is neither linear nor 
homogeneous (dependence on individual 𝐱) 
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Example (3/7) 

• Total graph: denote edges by  
non-zero total effects Ex, Ey at 𝐱 

• Don’t show total own effects 
(≡ 1) 

• More arrows than partial graph 
because of indirect effects 

Total Graph 
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Example (4/7) 

• Mediation analysis for final 
variable yj with j = 3 

• Final effect: is total effect, 
partitioned over all outgoing edges 

• Final graph: denote edges by 

non-zero final effects Fx
j
, Fy

j
 at 𝐱, 

own effects are defined to be zero, 
denote nodes by total effects 

 

Final Graph 
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Example (5/7) 

Total Effects: 

Ex = In −My
−1
Mx =

1 0 0
12 1 0
13 1 1

1 0
0 1
0 0

 

      =
1 0
4y1 1

4y1 + 1 1
=

1 0
12 1
13 1

 

 Ey = In −My
−1

In ○ In −My
−1 −1

 

       =
1 0 0
4y1 1 0

4y1 + 1 1 1
=

1 0 0
12 1 0
13 1 1
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Example (6/7) 
Final Effects:  

 Fx
3 = In −My

−1

3

T

𝟏 m ○ Mx 

 

       =
13 13
1 1
1 1

○
1 0
0 1
0 0

=
13 0
0 1
0 0

 

 

 Fy
3 = 1nn − In ○ In −My11

−1

3

T

, … , In −Mynn
−1

3

T

○ My 

      =
0 0 0
12 0 0
1 1 0
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Example (7/7) 

24 

Partial Graph Total Graph  Final Graph 
(direct effects) (total effects) (mediation effects  
       on final variable y3) 



Special Case: DAG (1/3) 

In a directed acyclic graph (DAG) we have: 

• Total effects are sum of products of direct 
effects over all paths. In our example for the 
total effect of x1 on y3 we have paths 
(x1 → y1 → y3) and (x1 → y1 → y2 → y3) 
giving 1 ∗ 1 + 1 ∗ 12 ∗ 1 = 13. 

• My is strictly lower triangular after topological 

sorting. Thus In −My   is unitriangular and 
also its inverse. Thus normalizing factor 

In ○ In −My
−1 −1

= In. 
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Special Case: DAG (2/3) 

• Ey is finite Neumann series: 

Ey = In −My
−1

= In + My
k

n

k=1

 

In our example we have  
 

Ey = I3 +My +My
2 =

1 0 0
0 1 0
0 0 1

+
0 0 0
12 0 0
1 1 0

+
0 0 0
0 0 0
12 0 0

 

 

     =
1 0 0
4y1 1 0

4y1 + 1 1 1
=

1 0 0
12 1 0
13 1 1
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Special Case: DAG (3/3) 

• Final endogenous effect: 
 

Fy
j
= In −My

−1

j

T

𝟏 n ○ My 
 

In our example we have: 
 

Fy
3  =

13 13 13
1 1 1
1 1 1

○
0 0 0
12 0 0
1 1 0

=
0 0 0
12 0 0
1 1 0
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Graph Theoretic Effects (1/3) 

However, in graph theory, effects are defined 
using Pearl‘s counterfactual analysis: To answer  

“Y would be y had Z been z“ 

replace equation for variable Z by constant z. 
This amounts to deleting all edges going into 
node Z: In this modified model Mx ι , My ι  row ι 

is replaced by zeros. Since Z now is exogenous, 
we can compute the derivative w.r.t. Z. 

See Definition 4 in Pearl (2009). 
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Graph Theoretic Effects (2/3) 

Definition:  

The graph theoretic effect is the derivative of Y 
w.r.t ι-th variable Z in the modified model  
Mx ι , My ι  with edges going into Z being set to 

zero and Z set to constant z. 

• Question: Is the graph theoretic effect 
identical to the total derivative? 

• Answer: YES! See Bartel (2019), sec. 3.2. 
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Graph Theoretic Effects (3/3) 

1) Graph theoretic effect is not conditional 

expectation E Y|z  but E Y|do z  in the 

counterfactual model using the do-Operator. 

2) Having ι = 1, … , n different modified models. 

3) The nulled out ι-th model equation is of no 
importance for the effects w.r.t. that variable. 

4) Bollen (1989), formula (8.81) defines Ey as 

In −My
−1

− In. Own effects ≠ 1 if cyclic.  
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Graph Theoretic Interpretation 

• Inverse can be written as Neumann series: 

In −My
−1

= In + My
k

∞

k=1

 

• Adjacency matrix: 

A = My
T 

• Binary versions of Mx, My give Identification 
matrices IDx, IDy (1 for non-zero element, 0 
otherwise). 
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Part 2 

 

Application: 

Insurance 
Financial Strength Ratings 
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Application: Insurance Ratings 

• Application to financial strength ratings of 
German life insurers 

• Model equations from expert system 

• Holistic approach instead of just key figures 

• Public input data from balance sheet 

• Revaluation to market values 

• Simple: no simulation, no cash flows 

• Final variable is economic capital ratio 
(ökonomische Eigenkapital-Quote, ökEK) 
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Economic Balance Sheet Statutory Balance Sheet 
Assets Assets Liabilities Liabilities 

KA 

SA 

BWKA 

SA 

ABWR 

EK 

VerfRfB 

PBWR 

Garantie 

SP 

ABWR EK 

VerfRfB 

ZÜVN+DT 

Garantie 

SP 

ZÜVU–DT 

FLV 
FLV 

FLV 
FLV 

SM
 

Economic Balance Sheet 
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1) EK = EKoGRNV + GR + NV 

2) VerfRfB = FreieRfB + SÜAF 

3) DR = HGBDR – ZZR 

4) MRZ = (ZA – ZZRA) / DR 

5) KE = KAE – KAA  

6) ZE = KE – ZA 

7) JÜV = JÜ + GewAb + Steuer 

8) RÜ = JÜV + ZRfB + DG 

9) RÜE = RÜ – ZE 

10) BABRate = ZVF / (DR + FLV) 

11) D = 1 / (BABRate + R) 

12) KA = BWKA  + ABWR 

13) Assets = BS + ABWR 

14) MWDR = DR * (1 + D*(MRZ–R)) 

15) ZÜVT = RÜE * D 

16) ZÜKA = DR – MWDR + ZZR 

17) PBWR = ZÜKA + ZÜVT 

18) Garantie = HGBDR – PBWR 

19) ZÜ = ABWR + PBWR 

20) GuO = … see Bartel (2014) 

21) ZÜVU = ZÜVUdet – GuO 

22) ZÜVN = ZÜ – ZÜVU 

23) DT = TaxRate * ZÜVU  

24) Puffer = ZÜVN + VerfRfB + DT 

Model Equations (1/2) 
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25) ökEK = EK + ZÜVU – DT 

26) ökEK-Quote = ökEK / BS 
 

27) SM = EK + VerfRfB + ZÜ 

28) SM-Quote = SM / BS 

29) NVZ = KE / BWKA 

30) GVZ = MRZ + ZÜVN / (DR * D) 

31) SA = BS – BWKA – FLV 

32) SP = BS – EK – VerfRfB – HGBDR – FLV 
 

Note to equation 20: On how to compute the value of guarantees 
and options GuO = f(KA, ZÜ, VerfRfB, D; ABWR, R) for German life 
insurers, see Bartel (2014). 

Model Equations (2/2) 
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Variables (1/4) 
 

37 

Input 
 

• ABWR:      aktivische Bewertungsreserven / hidden reserves 

• BS:        HGB-Bilanzsumme / statutory total assets 

• BWKA:      Buchwert Kapitalanlagen / statutory investments 

• DG:        Direktgutschrift / direct credit 

• EKoGRNV: HGB-Eigenkapital ohne GR und NV / pure equity 

• FLV:       Fondsgebundene LV / unit-linked insurance funds 

• FreieRfB:  freie RSt. für Beitragsrückerstattung / free surplus fund 

• GewAb:     Gewinnabführung / dividend payments 

• GR:        Genußrechte / participation rights 

• HGBDR:     HGB-Deckungsrückstellung / statutory technical reserves 

• JÜ:        JÜ nach Steuern, Gewinnabführung / net annual surplus 

• KAA:       Kapitalanlage-Aufwendungen / investment expenses 

• KAE:       Kapitalanlage-Erträge / investment returns 



Variables (2/4) 
 • NV:        nachrangige Verbindlichkeiten / subordinated liabilities 

• R:  risikoloser Marktzins / risk-free interest rate 

• Steuer:    Steuern / taxes 

• SÜAF:      Schlussüberschussanteil-Fonds / terminal bonsu fund 

• ZA:        Zinsaufwand / interest expenses 

• ZRfB:      Zuführung zur RfB / allocation to surplus fund 

• ZVF:       Zahlungen Versicherungsfälle / insurance benefits 

• ZZR:       Zinsszusatzreserve / additional interest reserve 

• ZZRA:      ZZR-Aufwand / expenses for additional interest reserve 
 

Output 
 

• Assets:    Marktwert-Bilanzsumme / market value of assets 

• BABRate:   Bestandsabbaurate / lapse and termination rate 

• DR:        HGBDR ohne ZZR / statutory techn. reserves w/o ZZR 

• DT:        latente Steuern / latent taxes 38 



Variables (3/4) 
 • EK:        HGB-Eigenkapital / equity 

• GuO:       Garantien und Optionen / guarantees and options 

• GVZ:       nachhaltige Gesamtverzinsung / customer’s total yield 

• JÜV:       JÜ vor Steuern und Gewinnabführung / annual surplus 

• KA:        Marktwert Kapitalanlagen / market value investments 

• KE:        Kapitalergebnis / investment earnings 

• MRZ:       mittlerer Tarifrechnungszins / avg. guaranteed rate 

• MWDR:      Marktwert-DR / market value of technical provisions 

• NVZ:       Nettoverzinsung / net return 

• ökEK:      ökonomisches Eigenkapital / economic capital 

• ÖkEK-Quote: ökonomische Eigenkapitalquote / economic capital ratio 

• PBWR:      passivische BWR/ hidden reserves in liabilities 

• D:      Passivduration / duration of liabilities 

• Puffer: Puffer aus angesammelten und zuk. Gewinnen / buffers 
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Variables (4/4) 
 

• RÜ:        Rohüberschuss / gross surplus 

• RÜE:       Risiko- und Übriges Ergebnis / risk and other result 

• SA:        sonstige Aktiva / other assets 

• SP:        sonstige Passiva / other liabilities 

• SM:        Sicherheitsmittel / solvency margin 

• SM-Quote: Sicherheitsmittelquote / statutory solvency ratio 

• VerfRfB:   verfügbare RfB / available surplus fund 

• ZE:        Zinsergebnis / interest earnings 

• ZÜ:        zukünftige Überschüsse / future surplus 

• ZÜKA:      zukünftige pass. Zinsüberschüsse / future interest surplus 

• ZÜVT:      zukünftige pass. vt. Überschüsse / future technical surplus 

• ZÜVN:      zukünftige Überschussbet. / future discretionary benefits 

• ZÜVU:      zukünftige Aktionärsgewinne / future dividends 
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Example: Insurance Economic Capital 

• Financial strength rating 

• HUK-COBURG Lebensversicherung AG 

• Accounting year 2017 

• Final effects with respect to market mean 
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Statutory 
balance 
sheet 

Economic 
balance 
sheet 

Economic and Statutory Balance Sheet 
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Economic Capital 

Economic 
Capital 

Buffer 

Solvency 
Margin  
(= economic 
 capital + buffer) 
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Final graph for the 
economic capital ratio of 
HUK-COBURG 
Lebensversicherung AG, 
Accounting year 2017 
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Graphical Causal Analysis (1/2) 
 

“Risk and other result” is very strong, 

compared to average of German life 

insurers, increasing the final variable 

“economic capital ratio” by 1.79%-points. 
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    Causal Analysis (1/2) 
 

“Economic capital ratio” is  

4.88%-points above average 

of German life insurers. 

“Hidden reserves” on assets 

are weak, decreasing the 

“economic capital ratio” by 

0.55%-points. 
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0 Ratio with respect to total assets 
1 out of 59 insurers, descending order 
2 Median 
3 Change in percentage points 

Final Effects: Strengths 
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0 Ratio with respect to total assets 
1 out of 59 insurers, descending order 
2 Median 
3 Change in percentage points 

Final Effects: Weaknesses 
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Market Plot: Top Strength 
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Market Plot: Top Weakness 
 



Input 
Data and 
Market 

50 

Mio. Euro or percent 
1 descending order 
2 Quantile of 59 insurers 



Output 
Data and 
Market 
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Mio. Euro or percent 
1 descending order 
2 Quantile of 59 insurers 



• Company‘s economic capital:  938 Mio. Euro. 

• Economic capital ratio:   9,95%. 

• First place of 59 German life insurers. 

• Top strength:  Statutory equity 

• Top weakness:  Hidden reserves 
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Part 3 

 

Structural Neural Networks : 

Identification and Estimation 
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Relation to Neural Networks (1/3) 

We have a structural neural network (SNN): 

• Nodes correspond to variables 

• Edge weights correspond to direct effects, 
interpretable if identified: explainable AI 

• Here special case: Linear activation function 

• “Small Data“ instead of Big Data 

• Sparse structural layers 

• Nonlinear optimization of quadratic target 
54 



Relation to Neural Networks (2/3) 

Automatic Differentiation (AD): 

• Exact computation of total derivatives, neither 
symbolic nor numeric but using computer code 

• No algebraic formula required! 

• Used for backpropagation in optimization of NN 

Application to total derivatives Ex, Ey: 

• Python modules PyTorch, autograd (DAG only) 

• Input: model equations and data 𝐱 

→ autograd and our algebraic formulas identical 
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Relation to Neural Networks (3/3) 

• In linear NN, all minima are global, see 
Kawaguchi (2016) “Deep Learning without 
Poor Local Minima“, MIT, i.e., identical values 
of target function.  

• Optimization problem is ill-posed. 

→ We use regularization / shrinkage. We have to 
accept estimation bias. And some coefficients 
are simply shrinked to their target value. 
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Identification (1/4) 

• How to check if expert model fits to reality? 
→ Estimate structural parameters from data 

• One can always get from structural to reduced 
form parameters. But structural parameters 
only identified if reverse relation unique. 

• Estimation convergence requires identification. 

• Identification matrices IDx, IDy impose zero-

restrictions on Mx, My. 
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Identification (2/4) 

• In econometrics, identification of structural 
linear models checked via composed matrix: 
 

M = In +My, Mx  

• Denote by M j,−j  the matrix M, with j-th row 

deleted and only those columns kept, where 
with zero in j-th row. 

• Rank criterion: coeffs of row j identified iff: 
 

rk M j,−j = n − 1. 
58 



Identification (3/4) 

• Rank criterion just for observed variables. 

• But in our expert model most model variables 
are latent (not observed). There is no general 
identification procedure of structural linear 
models for latent variables, see Bollen (1989) 
p. 331, or cyclic graphs, see Pearl (2017). 

• Graphical Theorem 2 of Pearl (2017) not 
available in linear algebra form.  
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Identification (4/4) 

• We use empirical local identification:  
Hessian (matrix of 2nd order derivatives) of 
target function must have full rank at the 
point 𝐱 of observed data. 

• Note: If a model is not identified, one could 
substitute model equations and check for 
identification of this lower dimensional model.  
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Estimation (1/8) 

Model equations yield theoretical effects. 
Compatible with empirical data? 

Assumptions:  

1) Linearity (constant effects, independent of 𝐱) 

2) Homogeneity (same effects for all insurers) 
 

Con:  Does not hold in practice, just a proxy. 

Pro:  Identification can easily be checked, 
 statistical test theory well developed. 
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Estimation (2/8) 

• Estimate structural neural network SNN 

• Identified effects are theoretically non-zero 
partial derivatives of equation system, given 
by identification restrictions IDx, IDy 

• Estimated effects averaged over all insurers. 

• Modelling demeaned data: 
d𝐲 = 𝐲 − 𝐲 , 
d𝐱 = 𝐱 − 𝐱   
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Estimation (3/8) 

• Structural form 
d𝐲 = Myd𝐲 +Mxd𝐱 

 (instead of reduced form d𝐲 = Exd𝐱.) 

• Matrices with τ observations (insurers): 
 

dY = d𝐲1, … , d𝐲τ  
dX = d𝐱1, … , d𝐱τ  

• Forecasts: dY = ExdX = In −My
−1
MxdX 

• Select manifest 𝐲 via matrix S: dY m = SdY  
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Estimation (4/8) 

• Sum of whitened squared manifest errors: 

SSE = tr dY m − dYm
T
Σd𝐲m
−1 dY m − dYm  

• 𝛉 is vector of non-zero parameters in Mx, My 

• 𝛉0 theoretical values given by expert system 

• Shrinking towards prior knowledge 𝛉0: 
 

Shrink = α 𝛉 − 𝛉0
TΣ𝛉

−1 𝛉 − 𝛉0  

• Target function: v = SSE + Shrink 
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Estimation (5/8) 

• Covariance matrix of estimated 𝛉 : 
 

Σ 𝛉 = 2σ 2Hv
−1 

• Hv is Hessian of target function v 

• Error variance: σ 2 = SSE 𝛉 / τ − dfeff  

• Effective degrees of freedom (not integer due 
to shrinkage), with numeric derivative: 

dfeff =  
𝜕Y it
𝜕Yit

τ

t=1

p

i=1
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1st Derivative of Target Function 

• First derivatives of SSE: 

𝜕SSE

𝜕My
= dY T ○ IDy,  

𝜕SSE

𝜕Mx
= dXT ○ IDx 

 = 2 S In −My
−1 T

Σd𝐲m
−1 dY m − dYm  

• First derivative of Shrink: 
 

𝜕Shrink

𝜕𝛉
= 2αΣ𝛉

−1 𝛉 − 𝛉0  

→ 
𝜕v

𝜕𝛉
: elementwise combine 

𝜕SSE

𝜕My
 and 

𝜕Shrink

𝜕𝛉
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2nd Derivative of Target Function 

• Second derivative of SSE: elementwise deri-
vation of algebraic Hessian, using IDx, IDy, 
see Bartel (2019), sec. 5.2.: 

HSSE =
𝜕SSE2

𝜕𝛉𝛉T
= ⋯ 

 

• Second derivative of Shrink: 
 

HShrink =
𝜕Shrink2

𝜕𝛉𝛉T
= 2αΣ𝛉

−1 

→ Hv = HSSE + HShrink 
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Estimation (6/8) 

Exact algebraic Hessian Hv of target v: 

1) Local identification if Hv has full rank at 𝐱 

2) Yields covariance matrix of estimates 𝛉  

3) Improve input for nonlinear optimization 
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Estimation (7/8) 

• Iterative Newton-Raphson optimization: 
 

𝛉 ← 𝛉 − rHv
−1

𝜕v

𝜕𝛉
 

• Theoretical starting values 𝛉0 

• Optimization in Python (SciPy optimize), 

passing algebraic gradient 
𝜕v

𝜕𝛉
 and Hessian Hv, 

both satisfying restrictions IDx, IDy 
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Estimation (8/8) 

• Generalized cross validation criterion for 
optimal shrinkage parameter α: 

GCV =
SSE

τ

τ

τ − dfeff

2

 

• Higher α reduces dfeff and GCV but increases 
SSE and GCV. Find optimal α, minimizing GCV 
using grid search. 
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Model Calibration (1/2) 

• Given the estimated direct effects 𝛉  we can 
calibrate our theoretical expert model. 

• Adapt theoretical model if significant 

deviations 𝛉 − 𝛉0 given covariance matrix Σ 𝛉 

• Calibrate identified structural direct effects 
Mx, My not total effects Ex, Ey 

• Estimation just gives information on direct 
effects not restricted to zero by identification 
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Model Calibration (2/2) 

Calibration of insurance ratings model: 

• We added a spread of 1% to risk-free rate R 
when computing the market value of technical 
provisions (MWDR) in model equation 14.  

• Accounts for Solvency II yield curve extrapola-
tion towards ultimate forward rate (UFR) 

• Increasing fit to published solvency ratios 
(without volatility adjustment, transitional 
measures).  
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